首页> 外文OA文献 >Importance sampling squared for Bayesian inference in latent variable models
【2h】

Importance sampling squared for Bayesian inference in latent variable models

机译:潜在变量中贝叶斯推断的重要性抽样平方   楷模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We consider Bayesian inference by importance sampling when the likelihood isanalytically intractable but can be unbiasedly estimated. We refer to thisprocedure as importance sampling squared (IS2), as we can often estimate thelikelihood itself by importance sampling. We provide a formal justification forimportance sampling when working with an estimate of the likelihood and studyits convergence properties. We analyze the effect of estimating the likelihoodon the resulting inference and provide guidelines on how to set up theprecision of the likelihood estimate in order to obtain an optimal tradeoff?between computational cost and accuracy for posterior inference on the modelparameters. We illustrate the procedure in empirical applications for ageneralized multinomial logit model and a stochastic volatility model. Theresults show that the IS2 method can lead to fast and accurate posteriorinference under the optimal implementation.
机译:当可能性在分析上难以估计但可以无偏估计时,我们通过重要性抽样考虑贝叶斯推理。我们将此过程称为重要性抽样平方(IS2),因为我们经常可以通过重要性抽样来估计可能性本身。当对可能性进行估计并研究其收敛性时,我们为重要抽样提供了正式的理由。我们分析了似然估计对结果推断的影响,并为如何建立似然估计的精度提供了指导,以便在模型参数的后验推断的计算成本和准确性之间获得最佳折衷。我们举例说明了广义多项式logit模型和随机波动率模型的经验应用程序。结果表明,在最佳实现条件下,IS2方法可以快速准确地实现后验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号